A. 银行\ 信托 \ 消费金融公司如何做好信贷业务过程中的风险管理
感觉楼上回答的已经很专业了。主要是现在都是智慧风控评估,已经不像之前,人来操作,很容易崩盘
B. 我是被称为中联消费金融的一个贷款平台骗的,希望大家注意防范
我2019年10月6号被骗600,最后叫我再汇6000我就没相信,这平台是骗子
C. 消费贷是如何进行风险控制的
据报道,按照20%的增速预测,我国消费信贷的规模到2020年可超过12万亿元,由于客户群体的差异和风险控制能力的不同,各种类金融、非金融机构提供的消费贷被挪用比例可能更高。
相关人士表示,一般情况下,平台风控能力不足,消费场景缺失,会选择用过高利率覆盖高风险,这样做的后果就会滋生循环风险,引发多头借贷、借新还旧问题和不合适的催收手段,更有少数平台、中介明里暗里直接为购房首付款提供借贷支持。
希望消费贷发展你的同时相关的风险可以被有效的遏制!
D. 北银消费金融公司贷款风险大吗
最怕的就是人家拿钱跑人或者公司倒了没钱还你 我就没玩这个
E. 中银消费金融贷款骗局:我没在中银消费金融贷款过,发信息让我还。我该怎么办,求帮助
中银消费贷款就是坑人的,我贷款20万最后只得到了188000,说是36期还款。实际是算的37期!
F. 大数据征信与银行风险控制创新
大数据征信与银行风险控制创新
数据将是未来银行的核心竞争力之一,这已成为银行业界的共识。在大数据时代,银行所面临的竞争不仅仅来自于同行业内部,外部的挑战也日益严峻,互联网、电子商务等新兴企业在产品创新能力、市场敏感度和大数据处理经验等方面都拥有明显的优势。在此形势下,利用大数据征信创新和提高银行的风险把控也逐渐成为业界关注与探讨的重要话题。
银行业在风险控制中的不足之处
普华永道发布的《2015年中国金融及银行业展望》指出,截至2014年第三季度末中国的商业银行不良贷款总额上升36%,达到7670亿元人民币,是四年来的高点。预计2015年不良贷款上升的趋势将持续。上述数据的背后,除了经济下行导致的逾期风险上升的原因之外,银行在风险控制中存在漏洞与缺陷也是重要原因。
信息不对称与贷款欺诈
随着P2P、小贷等民间借贷的兴起,借款人越来越容易通过非银行途径获得贷款。而民间借贷机构无须向人民银行上报数据,非银行体系的贷款申请情况、负债情况和逾期情况等信息不清晰、不透明、无法提前预知的矛盾愈发突出,往往到了借款人逾期甚至失联,银行才被动了解到借款人在民间借贷领域的部分历史逾期借贷情况或负债过高等不良行为信息。
贷款欺诈问题也是银行面临的另一个问题,尤其是在信用卡领域和部分运用信贷工厂模式运作的贷款产品。银行固化的发卡审核流程以及信贷工厂运作模式已经不再是秘密。目前信用卡、贷款的包装、组团欺诈骗贷的情况屡见不鲜,尤其是在信用贷款领域,约有60%的信用贷款来自于欺诈,这其中有一半以上是由于身份造假和资料包装。在数据维度不全面的情况下,银行等放贷机构由于没有第三方大数据支持,缺乏充分和有效的交叉核验手段,容易被组团骗贷者钻空子。
信息不及时与贷后风险防范
信息获取的不及时也给银行在贷后风险管理中带来了不同程度上的麻烦。例如,银行往往希望第一时间知道一家企业客户在获得贷款后是否面临新的法律诉讼,但是大多数银行使用的方式仅仅是依靠信贷经理不定期手动查询当地法院网站的方式获取信息,这当中存在着巨大的不确定性,一旦信贷经理忘记查询或者操作失误,贷后司法诉讼监控工作将形同虚设。这还不包括持续监控该客户在民间借贷中的申请情况、负债情况和逾期情况等风险点。银行在贷后风险防范过程中的手段和效率都极大地制约了银行风险控制的效果。
成本和效率的矛盾
为了解决信息不对称的问题和信息获取不及时的问题,银行往往需要采集大量的数据来辅助判断。但是数据采集的过程中通常运用的方法是要求借款人或企业补充提供大量的资料,这个过程中涉及到大量的人工成本和时间成本。而为了提高效率,需要搭建一套能够实现部分数据的自动采集,同时需要自动化程度较高的后台管理系统,但是这必须组建专门的工程师团队和进行大量的IT开发工作,对不少中小银行来说也是一个沉重的负担。
大数据征信与贷款风险控制
大数据征信产业的兴起
2015年1月,中国人民银行发印发了《关于做好个人征信业务准备工作的通知》,要求芝麻信用管理有限公司、腾讯征信有限公司、拉卡拉信用管理有限公司等八家机构做好为期六个月的个人征信业务准备工作。这意味着,这八家机构或将成为我国首批商业个人征信机构。由此,正式拉开了大数据征信产业的序幕,个人征信市场成长空间已经打开。基于美国个人征信市场达600亿美元的规模,考虑到我国人口基数的庞大,未来发展成熟之后我国的个人征信市场空间很可能达到1000亿元规模。
值得注意的是,大数据征信成为了互联网巨头的必争之地。除了阿里巴巴和腾讯,网络、京东金融、小米金融、360金融等互联网公司也表示将打造互联网征信系统,并有意申请第二批个人征信牌照,部分机构已经向人民银行提交了申请。互联网公司的高调介入表明,一方面互联网公司的创新特性和快速扩张特性给传统征信领域带来了新的活力和机遇,另一方面互联网公司各自不同的大数据优势和应用场景优势,将使得征信市场的竞争日趋白热化。
国内大数据征信产业发展趋势
各类大数据公司介入大数据征信市场,使数据维度和种类相比两年前有了极大的丰富。特别是伴随着移动互联网时代兴起,围绕着移动上网设备信息、地理位置信息、运营商信息的大数据公司和大数据服务层出不穷,并开始运用在P2P的贷款审核和交叉核验流程中。但是,数据的来源和有效性依然制约着大数据征信产业的发展,目前行业依然处于早起的探索阶段,尚未有成熟的“杀手级”应用工具出现。
信息孤岛依然存在。信息孤岛是目前制约国内信贷行业发展的重要因素。信息不对称、不透明,带来了大量的多头负债风险和欺诈风险。在国内大数据征信产业兴起时,市场对于消除信息不透明、打破信息孤岛寄予极大的期待。从目前行业的发展情况来看,信息孤岛在短期内无法完全消失。
首先,公共事业缴费、固定资产、社保、居住等与贷款风险控制息息相关的信息,依然归属于相关政府部门。虽然工商、司法等信息已经向社会开放,但是政府信息开放程度依然较低,这将是一个长期而复杂的过程。
其次,掌握大量公民信息的互联网公司相互之间难以产生信息互通。目前国内社交数据、电商数据、地理位置数据、搜索数据、移动设备使用行为数据等互联网信息分别集中于阿里、网络、腾讯、京东、360等互联网巨头手中,这些公司在跑马圈地的过程中存在着大量的竞争关系,数据互通、信息共享在目前看来可能性极低。
最后,征信公司之间的信息也难以互通。征信公司的核心竞争力在于拥有自己独有的信息。作为直接竞争对手,征信公司之间不可能用自己的核心数据去提升竞争对手的竞争力。可以说,一方面征信公司致力于解决信息不对称,另一方面征信公司也在构建数据壁垒。
应用场景逐渐丰富,组合信用评估或成主流。放眼征信行业较为发达的美国,征信报告的运用早已不仅限于金融领域,例如招聘、租房、租车、相亲等行业和领域都需要使用个人征信报告。随着“互联网+”的推动、大数据概念的提出以及P2P互联网金融的发展,目前国内的征信公司也在应用场景的丰富性上进行着探索和尝试。
从国内大数据征信行业的发展现状来看,由于信息孤岛、数据不完全共享的现状将长期存在,当行业发展到一定阶段,将会产生组合式的信用评估。譬如要求当事人同时出具多家机构的信用报告,从社交、电商、招聘、浏览行为、地理位置等不同角度对当事人做出全息用户画像,判断其综合情况。这是因为单方面的信用评估已不能全面评价一个人,必须发挥出各家大数据征信公司的信息优势才能全面评价。
大数据征信在贷款风险领域的应用案例
反映电商信用行为的芝麻信用。芝麻信用基于阿里巴巴的电商交易数据和蚂蚁金服的互联网金融数据,并与公安网等公共机构以及合作伙伴建立数据合作,数据涵盖了信用卡还款、网购、转账、理财、水电煤缴费、租房信息、住址搬迁历史、社交关系等等。芝麻信用以芝麻分来直观呈现信用水平,主要包含了用户信用历史、行为偏好、履约能力、身份特质、人脉关系五个维度,从950~350分划分为5个等级,分数越高代表信用程度越好,违约可能性越低。芝麻征信还出具个人信用报告,其主要由央行征信中心负责提供,记录了个人基本信息、贷款信息、信用卡信息和信用报告查询记录等。
反映互联网社交行为的腾讯征信。腾讯征信的数据更多的是社交数据,其征信产品有两大类别:一是反欺诈产品,包括人脸识别和欺诈评测;二是信用评级产品,包括信用评分和信用报告。腾讯征信反欺诈产品的主要服务对象包括银行、证券、保险、消费金融、小贷、P2P等商业机构,它能帮助企业识别用户身份,防范涉黑账户或有组织欺诈,发现恶意或者疑似欺诈客户,避免资金损失。对于之前没有个人征信报告的蓝领工人、学生、个体户、自由职业者等用户,腾讯通过他们使用社交、门户、游戏、支付等服务,通过海量数据挖掘和分析技术来预测其风险表现和信用价值,为其建立个人信用评分。
反映借款人风险的好贷云风控。好贷云风控是好贷网和全球最大的个人信用评分机构FICO(费埃哲)共同打造的大数据风控平台,整合征信公司、司法数据、工商数据、消费数据等重要数据源头,构建了金融贷款机构风控所需全行业各领域的风险数据库,同时包括反欺诈风险名单库、重大风险识别名单库、贷款申请记录名单库的数据,合计已超过7000万条。多达6000多个维度的数据库不仅能有效补足贷款机构本地的数据库,还能协助其大幅提高反欺诈识别和信用风险识别能力,同时结合FICO的信贷决策引擎为信贷机构提供服务。金融机构不用再投入巨资自建系统,不用花巨大精力和成本寻找各种风控数据。
银行风险控制与大数据征信的结合
大数据难以解决所有问题,但可以作为有效的工具。大数据能为信贷行业带来什么价值?笔者的判断是:大数据在未来一段时间,仍无法解决信贷风控中的所有问题;或者说单纯依靠大数据进行信贷风控、审批全流程的贷款种类还很有限。
但是,大数据已经可以解决信贷行业的一部分问题,并且将发挥越来越重要的作用。比如,大数据在进行反欺诈识别、风险动态监测、用户行为分析、用户画像等领域,都已经有了越来越多的运用。银行机构应当拥抱大数据,敢于和善于运用大数据辅助进行风险把控。
通过大数据,将民间借贷信息对银行透明化。银行机构通过大数据征信的数据,可以了解借款人在民间借贷的信息。目前大数据征信公司提供的民间借贷相关信息主要包含黑名单信息、贷款申请信息和被查询信息。以好贷云风控为例,其包含了各家征信公司的黑名单信息以及好贷云风控平台整合的数十家P2P平台的黑名单信息,同时也包含了好贷网的1000万条贷款申请记录和每个星期增加一倍的被查询信息。这些信息都从侧面反映了借款人的民间借贷情况。通过大数据征信,将能够使民间借贷信息对银行机构越来越透明,识别出更多的民间借贷风险,更好地进行贷款审核和反欺诈识别。
丰富数据维度,提升对信用档案客群风控能力。2014年,美国政策与经济研究委员会(PERC)对于非金融信息(也成为替代性信息)在信贷决策中作用的研究表明:诸如水、电、煤、有线电视、手机等非金融信息纳入征信系统,显著地提高了信用档案在案人群的信贷获得能力。
目前不少银行逐步认识到已经纳入银行传统数据库的信息量并不丰富和完整,开始积极与第三方大数据征信公司频繁接触与接洽合作,如客户信息、银行拥有客户的基本身份信息等。但客户其他的信息,如性格特征、兴趣爱好、生活习惯、行业领域、居住状况等却是银行难以准确掌握的;另一方面对于多种异构数据的分析是难以处理的,如银行有客户的资金往来的信息、网页浏览的行为信息、服务通话的语音信息、营业厅、ATM的录像信息,但除了结构化数据外,其他数据无法进行分析,更谈不上对多种信息进行综合分析,无法打破“信息孤岛”的格局。通过与第三方大数据征信公司的合作,尽力弥补自身在获取信息维度以及数据挖掘和分析能力方面的不足。
综上,笔者认为,在互联网时代和大数据时代的背景下银行如欲进一步加快转型的步伐、实现诚信社会与普惠金融的愿景、肩负信用风险管理重任,就要在信息使用、贷前调查、贷中监控等风险控制方面借助互联网的优势,拥抱大数据征信,充分利用内外各种信息做好客户征信和增信,进一步提高对风险的控制和管理水平,才能立于不败之地。
以上是小编为大家分享的关于大数据征信与银行风险控制创新的相关内容,更多信息可以关注环球青藤分享更多干货
G. 银行和一些网贷平台怎样做信贷风控啊
一、坚持合规经营、规范操作
平台要严格遵照国家法律法规及监管制度,不踩政策红线。按照审批权限和申报流程进行授信业务的申报审批,确保授信业务贷前调查和贷后管理的工作质量;加强贷后管理队伍建设,配置富有信贷工作经验的人员充当贷后管理岗位,要确保做到先落实贷款审批条件再发放贷款,项目贷款资本金合法合规,抵押担保足额有效,信贷资金使用有跟踪监测。
二、风控团队专业能力过硬
一方面,平台自身的风控体系是一切业务的基础。首先是数据分析,根据数据挖掘,对逾期客户进行特征分析、产品盈利分析等;紧接着政策制定团队需要确定目标人群、设计借款产品准入政策、核批政策、反欺诈政策、催收政策等;最后制定出贷款产品政策,包括中台审核、前端营销、后台催收的各项政策制度。
另一方面,借贷流程中的每个环节都要做好具体的风险控制。网贷平台的借贷可分为贷前数据分析、贷中审查发放和贷后还款催收三个主要步骤。在贷前调查人员对借款人进行了财务状况分析、贷款需求研究、目标回报率和风险预估等基础工作后,审核人员需要判定借款人资料的有效性和真实性,结合决策引擎和评分卡等对客户做出是否核批的决定。催收人员则按照客户逾期时间长短,根据催收评分卡和决策引擎,对逾期客户进行催收工作。环环紧扣,相辅相成,才能实现高度严密的风控。
三、积极利用互联网大数据征信
长期来看,网贷行业走向合规及高水平是必然趋势,而具有覆盖范围广、人数多、数据真实、转化有效等特性的大数据征信必将在互联网金融领域发挥重要作用。运用大数据和信息技术,针对海量的信息数据进行过滤和辅助判断,可以有效降低金融风险。征信数据集合基础上的互联网化审批,直观呈现用户信用状况的信用评分、过滤有潜在风险客户的行业关注名单,可以帮助平台对借款人的信用做出更准确的判断,通过一系列量化的参数,有效控制信用风险。此外,对平台来说,巧用大数据征信还能有效提高审批效率,降低风控成本。风险预警网收录海量各级人民法院判决文书、企业/个人案件信息、法院执行信息、税务信息、行政执法信息、催欠信息等并每日更新。信息完整,内容真实,查询简便,实时查询企业的工商变更、经营异常、开庭公告、裁判文书、失信信息、网贷逾期信息,环保执法信息,股权出质、动产抵押、股权冻结等信息,帮助用户及时掌握企业异常情况。同时为商业银行、P2P、小额贷款、电商金融、消费金融等小微金融机构提供大数据驱动的信贷风控决策服务
H. 消费金融的监管
由于消费金融公司发放的贷款是无担保、无抵押贷款,风险相对较高,银监会因而设立了严格的监管标准,消费金融公司在试点阶段的业务将不涉及房地产贷款和汽车贷款等高风险产品。且消费金融公司资本充足率不得低于10%,同业拆入资金比例不高于资本总额的100%,资产损失准备充足率不低于100%。
此外,为防止一般用途个人消费贷款被挪作他用,银监会还要求,该项贷款的额度不得超过以往对该借款人发放单笔贷款的最高额度,而且只有已取得个人耐用消费品贷款的信誉良好的老客户才可得到此项贷款。
中国银监会上周颁布了《消费金融公司试点管理办法》。在未来几个月,北京、上海、天津和成都将先行试点成立消费金融公司。这类公司是经过银监会批准,不吸收公众存款,以小额、分散为原则,为中国境内居民个人提供无抵押、无担保消费贷款的非银行金融机构。前期试点的消费金融公司不能经营“车贷”和“房贷”,且贷款利率在4倍于银行利率的范围内,根据借款人的风险承受力灵活商定。
I. 消费金融贷款有风险吗
有的,需要谨慎
个人消费贷款
贷款基本条件:借款人为具有完全民事行为能力,在本地常住,有固定住所、职业、有还本付息能力和意愿,通过审核的自然人。
贷款用途:可用于房屋装修、购买汽车、旅游、出国留学、购置消费品或服务等各类家庭综合消费支出。
贷款金额:根据借款人的基本条件、还款能力、信用状况、担保情况、贷款用途等情况,综合测算确定贷款额度;最高不超过1000万元。
贷款期限:根据借款人的实际情况综合测算确定,最长不超过10年(含)。
贷款利率:执行中国人民银行拉萨中心支行公布的同期同档次基准贷款利率。
贷款担保:可采用信用、保证、抵押、质押、组合担保等担保方式。
还款方式:贷款期限在一年(含)以内的,采用按月付息、到期一次性还本的还款方式;贷款期限在一年以上的,原则上应采用等额本金或等额本息还款方式。
个人购房贷款
贷款基本条件:借款人为具有完全民事行为能力,在本地常住,有固定住所、职业、有还本付息能力和意愿,通过审核的自然人。
贷款用途:可用于购买住房或商用房。
贷款金额:最高不得超过购房款的80%,购买二套住房、二手房、商用房等依照本行相关规定执行。
贷款期限:购买住房贷款最长期限不得超过30年,购买商用房贷款最长期限不得超过10年,且借款人年龄加贷款期限不超过65周岁。
贷款利率:依照本行最新政策执行。
贷款担保:可采用信用、保证、抵押、质押、组合担保等担保方式。
还款方式:贷款期限在一年(含)以内的,采用按月付息、到期一次性还本的还款方式;贷款期限在一年以上的,采用等额本金或等额本息还款方式。